std::defer_lock, std::try_to_lock, std::adopt_lock

< cpp‎ | thread
Defined in header <mutex>
constexpr std::defer_lock_t defer_lock {};
(since C++11)
(until C++17)
inline constexpr std::defer_lock_t defer_lock {};
(since C++17)
constexpr std::try_to_lock_t try_to_lock {};
(since C++11)
(until C++17)
inline constexpr std::try_to_lock_t try_to_lock {};
(since C++17)
constexpr std::adopt_lock_t adopt_lock {};
(since C++11)
(until C++17)
inline constexpr std::adopt_lock_t adopt_lock {};
(since C++17)

std::defer_lock, std::try_to_lock and std::adopt_lock are instances of empty struct tag types std::defer_lock_t, std::try_to_lock_t and std::adopt_lock_t respectively.

They are used to specify locking strategies for std::lock_guard, std::unique_lock and std::shared_lock.

Type Effect(s)
defer_lock_t do not acquire ownership of the mutex
try_to_lock_t try to acquire ownership of the mutex without blocking
adopt_lock_t assume the calling thread already has ownership of the mutex


#include <mutex>
#include <thread>
struct bank_account {
    explicit bank_account(int balance) : balance(balance) {}
    int balance;
    std::mutex m;
void transfer(bank_account &from, bank_account &to, int amount)
    // lock both mutexes without deadlock
    std::lock(from.m, to.m);
    // make sure both already-locked mutexes are unlocked at the end of scope
    std::lock_guard<std::mutex> lock1(from.m, std::adopt_lock);
    std::lock_guard<std::mutex> lock2(to.m, std::adopt_lock);
// equivalent approach:
//    std::unique_lock<std::mutex> lock1(from.m, std::defer_lock);
//    std::unique_lock<std::mutex> lock2(to.m, std::defer_lock);
//    std::lock(lock1, lock2);
    from.balance -= amount;
    to.balance += amount;
int main()
    bank_account my_account(100);
    bank_account your_account(50);
    std::thread t1(transfer, std::ref(my_account), std::ref(your_account), 10);
    std::thread t2(transfer, std::ref(your_account), std::ref(my_account), 5);

See also

tag type used to specify locking strategy
constructs a lock_guard, optionally locking the given mutex
(public member function of std::lock_guard<Mutex>)
constructs a unique_lock, optionally locking the supplied mutex
(public member function of std::unique_lock<Mutex>)