< cpp‎ | types
Type support
Basic types
Fundamental types
Fixed width integer types (C++11)
Numeric limits
C numeric limits interface
Runtime type information
Type traits
Type categories
Type properties
(C++11)(until C++20)
(C++11)(deprecated in C++20)
Type trait constants
Constant evaluation context
Supported operations
Relationships and property queries
Type modifications
Type transformations
(C++11)(until C++20)(C++17)
Defined in header <type_traits>
template<class... B>
struct disjunction;
(1) (since C++17)

Forms the logical disjunction of the type traits B..., effectively performing a logical OR on the sequence of traits.

The specialization std::disjunction<B1, ..., BN> has a public and unambiguous base that is

  • if sizeof...(B) == 0, std::false_type; otherwise
  • the first type Bi in B1, ..., BN for which bool(Bi::value) == true, or BN if there is no such type.

The member names of the base class, other than disjunction and operator=, are not hidden and are unambiguously available in disjunction.

Disjunction is short-circuiting: if there is a template type argument Bi with bool(Bi::value) != false, then instantiating disjunction<B1, ..., BN>::value does not require the instantiation of Bj::value for j > i

Template parameters

B... - every template argument Bi for which Bi::value is instantiated must be usable as a base class and define member value that is convertible to bool

Helper variable template

template<class... B>
inline constexpr bool disjunction_v = disjunction<B...>::value;
(since C++17)

Possible implementation

template<class...> struct disjunction : std::false_type { };
template<class B1> struct disjunction<B1> : B1 { };
template<class B1, class... Bn>
struct disjunction<B1, Bn...> 
    : std::conditional_t<bool(B1::value), B1, disjunction<Bn...>>  { };


A specialization of disjunction does not necessarily inherit from of either std::true_type or std::false_type: it simply inherits from the first B whose ::value, explicitly converted to bool, is true, or from the very last B when all of them convert to false. For example, std::disjunction<std::integral_constant<int, 2>, std::integral_constant<int, 4>>::value is 2.

The short-circuit instantiation differentiates disjunction from fold expressions: a fold expression like (... || Bs::value) instantiates every B in Bs, while std::disjunction_v<Bs...> stops instantiation once the value can be determined. This is particularly useful if the later type is expensive to instantiate or can cause a hard error when instantiated with the wrong type.


#include <type_traits>
#include <string>
// checking if Foo is constructible from double will cause a hard error
struct Foo {
    template<class T>
    struct sfinae_unfriendly_check { static_assert(!std::is_same_v<T, double>); };
    template<class T>
    Foo(T, sfinae_unfriendly_check<T> = {} );
template<class... Ts>
struct first_constructible {
    template<class T, class...Args>
    struct is_constructible_x : std::is_constructible<T, Args...> {
        using type = T;
    struct fallback {
        static constexpr bool value = true;
        using type = void; // type to return if nothing is found
    template<class... Args>
    using with = typename std::disjunction<is_constructible_x<Ts, Args...>...,
// OK, is_constructible<Foo, double> not instantiated
static_assert(std::is_same_v<first_constructible<std::string, int, Foo>::with<double>,
static_assert(std::is_same_v<first_constructible<std::string, int>::with<>, std::string>);
static_assert(std::is_same_v<first_constructible<std::string, int>::with<const char*>,
static_assert(std::is_same_v<first_constructible<std::string, int>::with<void*>, void>);
int main() { }

See also

logical NOT metafunction
(class template)
variadic logical AND metafunction
(class template)